
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 257-261

REPLACEMENT OF S/W INSPECTION WITH S/W TESTING

Mitu Kumari*, Archana Sharma** & Vipin Kamboj***

The goal of software inspection and software testing is to reduce the expected cost of software failure over the life of the
software product. In the case of inspections, the defect trigger is defined as a set of values that associate the skills of the
inspector with the discovered defect. Similarly, for test scenarios, the defect trigger values embody the deferring strategies
being used in creating these scenarios. Software inspection is the generic name for a set of cost-effective ways of evaluating
user interfaces to find usability problems. They are fairly informal methods and easy to use. This paper investigates whether
we can replace inspection with testing or not.

Keywords: Software Inspection, Software Quality, Verification, Reliability, Software Cost, Validation, Software Testing.

* MCA Deptt., Guru Nanak Khalsa Institute of Technology &
Mangement Studies, Yamuna Nagar, Kurukshetra University,
Kurukshetra, Haryana, India. E-mail: mitu.kajal@gmail.com

** MCA Deptt., Guru Nanak Khalsa Institute of Technology &
Mangement Studies, Yamuna Nagar, Kurukshetra University,
Kurukshetra, Haryana, India. E-mail: asarchusharma@gmail.com

*** MCA Deptt., Guru Nanak Khalsa Institute of Technology &
Mangement Studies, Yamuna Nagar, Kurukshetra University,
Kurukshetra, Haryana, India. E-mail: vipsmax@gmail.com

INTRODUCTION

While Software has become one of the most valuable
products of the past decades, its growing complexity and
size is responsible for making it one of the most challenging
one to build and maintain. The challenge stems from the
fact that software development belongs to the most labor
and, at the same time, knowledge- intensive processes of
today’s world. The heavy dependence on knowledgeable
human beings may be one reason why software development
is often compared to an art or craft rather to an engineering
discipline. However, it has almost become impossible
nowadays for a craftsman to produce large software system
according to a given schedule, to a limited budget, and to
the quality requirements of a customer at delivery. Hence
researchers as well as practitioners are increasingly obliged
to address the question of how to integrate engineering
principles into software development. An important one is
to perform high quality enhancing activities as early as
possible. Despite the simplicity of the principle one can
observe in the software industry that the activity of detecting
and correcting software problems is often deferred until late
in the project.

To address this issue, engineering-oriented [1] software
organizations have started to implement rigorous software
inspection and software testing.

Software inspection is a proven method for improving
software product quality and it provides a very cost effective

way to improve their development process. Software
inspection allows software development teams to find effect
earlier and cheaper, thus reducing rework cost. In addition
there are often benefits more difficult to quantify. Software
inspections aid in project management; and they provide
more definite and more dependable milestones.

Performing an inspection immediately after completion
of a work product, or a part, and analyzing the resultant
data of the detected defects will provide an early quality
indicator to the management and technical team.

Software testing is the process of executing a program
or system with the intent of finding errors. In other words,
software testing is a critical element of software quality
assurance and represents the ultimate review of specification,
design and code generation. Software testing is involved in
every stage of software life cycle, but the testing done at
each level of software development is different in nature.
There are different types of software testing techniques viz.
Unit Testing, Integration Testing, System Testing and
Acceptance Testing. Software testing has been widely used
as a way to help engineers develop high quality systems.

The contribution of this study is first, a view of the
software inspection and software testing. Second, the study
checks whether can we replace software inspection with
software testing?

DEFINITION

Software Testing

Software testing is any activity aimed at evaluating an
attribute or capability of a program or system and
determining that it meets its required results. Software
Testing is an empirical investigation conducted to provide
stakeholders with information about the quality of the
product or service under test [6], with respect to the context

��� �����	��
����
��
�
���
��
���������	
����

COM6\D:\HARESH\11-JITKM

in which it is intended to operate. Software testing is used
for different purposes such as

� To improve quality

� For verification & validation

� For reliability estimation

Software Inspection

The word ‘inspect’ is an ordinary English verb whose
meaning is “to look at or examine”. Inspection in software
engineering [2] refers to peer review of any work product
by trained individuals who look for defects using a well
defined process. An inspection is also known as Fagan
Inspection after Michael Fagan, the inventor of the process.
Inspections are a static technique in that the code or
document is not executed. Each inspected document during
the project life cycle is examined and compared to a previous
state to see if the transformed state has been correctly
transformed and is itself correct. Following Figure 1 is an
example of this relationship for inspection :

information necessary for the participant to perform an
effective and efficient inspection. If an inspection is being
used to provide the education or backup capability then an
overview is usually warranted.

3. Preparation:

Each participant is responsible for examining the work
product to the actual inspection meeting, noting any defects
found or issues to be raised. Almost 75% of the errors found
during inspection are identified during the preparation step.
The product should be compared against any predecessor
(specification) documents to assess completeness and
correctness. Checklist of defects commonly found in this
type of work product should be used during preparation to
hunt to anticipated types of errors.

4. Inspection Meeting:

The inspection meeting is the heart of software inspection.
Its primary purpose is to find as many defects as possible
during the meeting. During the discussion, all inspectors
can report defects or raise other issues, which are
documented on a form by the recorder.

The meeting should last no more than two hours. At its
conclusion, the group agrees on an assessment of the
product: accepted as it is or accepted with minor revisions
needed and a second inspection required or rebuild the
product.

5. Analysis Meeting:

This analysis meeting step involves understanding. This
activity was not included with the original inspection method
defined by Fagan. Carole Jones had identified it as adding
value and improvement when built upon the traditional
inspection method. This activity is viewed as optional by
many inspection proponents, but it is highly recommended.
If included, there is some added cost for inspections.

6. Rework:

The producer is responsible for resolving all issues raise
during the inspection. This does not necessarily mean
making every change that was suggested, but an explicit
decision must be made about how each issue or defect will
be dealt with.

7. Follow-up:

To verify that the necessary rework has been performed
properly, the moderator is responsible for following up with
the author. If a significant fraction (say 10%) of the work
product was modified, an additional inspection may be
required. This is the final gate through which the product
must pass in order to the inspection to be completed.

Figure 1: Relationships of Documents for an Inspection
Inspection Process

A formal inspection consists of several activities which are
as follows:

1. Planning & Scheduling:

The moderator selects the inspection team, obtain material
to be inspected from the producer and distribute them and
any other relevant documents to the inspection team in
advance. Materials should be distributed at least at least 2
or 3 days prior to the inspection. The complete planning
and scheduling for inspection occurs in two stages.

a. When the project leader defines the initial project
plan(inspection planning).

b. When specific work product approach inspection
readiness (inspection scheduling).

2. Overview:

The overview meeting is schedule based on a need as
determined by the moderator with the project leader and
producer. This includes education and transfer of

����
��������������������������������������� ���

COM6\D:\HARESH\11-JITKM

8. Prevention Meeting:

The prevention team leader for the prevention meeting will
record the results of the meeting & deliver proposals for
actions to the organization management The prevention
meeting as part of the inspection is considered optional
and is dependent on the analysis meeting. This is the final
activity in the evolved inspection meeting.

Software Testing

There is a plethora of testing methods and testing techniques,
serving multiple purposes in different life cycle phases.
Classified by purpose, software testing can be divided into:
correctness testing, performance testing, reliability testing
and security testing. Classified by life-cycle phase, software
testing can be classified into the following categories:
requirements phase testing, design phase testing, program
phase testing, evaluating test results, installation phase
testing, acceptance testing and maintenance testing. By
scope, software testing can be categorized as follows: unit
testing, component testing, integration testing, and system
testing.

1. Correctness Testing

Correctness is the minimum requirement of software, the
essential purpose of testing. Correctness testing will need
some type of oracle, to tell the right behavior from the wrong
one. The tester may or may not know the inside details of
the software module under test, e.g. control flow, data flow,
etc. Therefore, either a white-box point of view or black-
box point of view can be taken in testing software. We must
note that the black-box and white-box ideas are not limited
in correctness testing only.

� Black-Box Testing

The black-box approach is a testing method in
which test data are derived from the specified
functional requirements without regard to the final
program structure. It is also termed data-driven,
input/output driven [3], or requirements-based [4]
testing. Because only the functionality of the
software module is of concern, black-box testing
also mainly refers to functional testing—a testing
method emphasized on executing the functions and
examination of their input and output data.

� White-Box Testing

Contrary to black-box testing, software is viewed
as a white-box, or glass-box in white-box testing,
as the structure and flow of the software under
test are visible to the tester. Testing plans are
made according to the details of the software
implementation, such as programming language,
logic, and styles. Test cases are derived from the

program structure. White-box testing is also called
glass-box testing, logic-driven testing [3] or design-
based testing [4].

Control-flow testing, loop testing, and data-flow testing
[5], all maps the corresponding flow structure of the software
into a directed graph. Test cases are carefully selected based
on the criterion that all the nodes or paths are covered or
traversed at least once. By doing so we may discover
unnecessary “dead” code — code that is of no use, or never
get executed at all, which can not be discovered by
functional testing. In mutation testing, the original program
code is perturbed and many mutated programs are created,
each contains one fault. Each faulty version of the program
is called a mutant.

2. Performance Testing

Performance has always been a great concern and a driving
force of computer evolution. The goal of performance testing
can be performance bottleneck identification, performance
comparison and evaluation, etc. The typical method of doing
performance testing is using a benchmark—a program,
workload or trace designed to be representative of the typical
system usage [7].

3. Reliability Testing

Software reliability refers to the probability of failure-free
operation of a system. The robustness of a software
component is the degree to which it can function correctly
in the presence of exceptional inputs or stressful
environmental conditions. Robustness testing [8] differs with
correctness testing in the sense that the functional
correctness of the software is not of concern. It only watches
for robustness problems such as machine crashes, process
hangs or abnormal termination.

4. Security Testing

Software quality, reliability and security are tightly coupled.
The purpose of security testing of these systems include
identifying and removing software flaws that may
potentially lead to security violations, and validating the
effectiveness of security measures. Simulated security
attacks can be performed to find vulnerabilities.

Can Software inspection replace software testing?

Inspections are low technology, labor intensive and
rarely fun. All these factors cause people to question the
value of inspection. A frequent challenge is put forwarded
that some form of testing such as unit testing, will be just as
effective & effective as that inspection.

If it is accepted that inspection have value as compared
to testing , then a next question will be arise that , should
we combine testing & inspection , in order to get better

��� �����	��
����
��
�
���
��
���������	
����

COM6\D:\HARESH\11-JITKM

results. But there are some reasons for not testing before
inspections. As inspection require a motivated team, testing
first may lead to a view that the code is reasonably stable &
the team will be less motivated to perform the best
inspection.

1. With the investment of test the producer may have
fewer tendencies to receive the major rework on
an already stable program that will also require
retesting.

There are also so many disadvantages of doing software
testing before the software inspection which are as follows:-

1. Unit testing leads the software developer to have
false confidence that the product works, so why
we should perform software inspection.

2. It is hard decision to inspect a large batch that has
been tested and there may the view that there is no
longer time to inspect.

There are so many reasons to perform the software
inspection before the software testing due to the following
reasons:

1. You can bypass the unit test if the software
inspection produces very good results. You can
recover earlier with lower cost to serious design
defects found in software inspection versus
software unit testing.

Following are some experimental result that compare
the software inspection with software testing.

CONCLUSION

Testing and inspection are not mutually exclusive; instead
they complement each other as quality assurance techniques,
both improving different aspects of product quality. Fagan
(1976) reports that inspection pays off even if the same code
later goes through testing. Inspection finds different kinds
of errors than testing finds the errors.

Finding defects is not the only goal of testing, for
example, testing is still needed to assess reliability. Finally
we can say that we can’t replace software inspection with
software testing, but both of these are two faces of a coin.

REFERENCES

[1] Software Engineering, IEEE Computer Society Press,
(1998) 340-349.

[2] A Standard for Inspection Application Software, William
E. Perry, (1990).

[3] Myers, Glenford J., The Art of Software Testing, Publication
Info: New York : Wiley, c 1979. ISBN: 0471043281 Physical
Description: xi, 177 p.: ill.; 24 cm.

[4] Hetzel, William C., The Complete Guide to Software
Testing, 2nd ed. Publication Info: Wellesley, Mass. : QED
Information Sciences, (1988). ISBN: 0894352423. Physical
Description: ix, 280 p. : ill ; 24 cm.

[5] Norman Parrington and Marc Roper, Understanding
Software Testing, Published by John Willey & Sons, (1989).
ISBN: 0-7458-0533-7; 0-470-21462.

[6] http://en.wikipedia.org/wiki/Software_testing.

Table 1
Finding Different Kinds of Bugs by Code Inspection or

Testing

Sr. Error Type/Location Software Software
No. Inspection Testing

1 Module interface errors X -

2 Excessive code complexity X -

3 Unrequired functionality present X -

4 Usability problems - X

5 Performance problems X X

6 Badly structured code X -

7 Failure to meet requirements X X

8 Boundary value errors X X

By analyzing the above table, we found that software
inspection found 2.7 times more errors as compared to unit
test. It is also found in some experiments that a defect caught
by testing cost 14.5 times as much as to do one found by
software inspection.

Inspection tends to reveal different kinds of errors than
do testing activities. Table 1 shows some common types of

programming problems and techniques which are effective
for detecting errors.

The use of software code inspections, design
inspections and requirements inspections has been found
to increase software quality and lower software development
cost.

The inspection process includes the collection of data
with which one can analyze the effectiveness of the process.
There are many articles reporting the results of such analysis.
Some researchers have summarized these reports. They
define defect detection effectiveness as the percentage of
defects in an artifacts discovered by the detection techniques.
The following table shows the average efforts to detect
defects in hours per defect.

Table 2
Average Efforts to Detect Defects in Hours Per Defect

Sr. Defect Detection Min. Most Likely Max.
No. Technique Value Value Value

1 Design inspection 0.58 1.58 2.9
2 Code inspection 0.67 1.46 2.7
3 Software testing 4.5 6.0 17

����
��������������������������������������� ��

COM6\D:\HARESH\11-JITKM

[7] Filippos I. Vokolos, and Elaine J. Weyuker; Proceedings of
the First International Workshop on Software and
Performance, (1998) 80-87.

[8] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610. 12-1990), IEEE Computer
Soc., (1990).

[9] Software Inspection, Ronald A. Radice, Tata MacGraw Hill,
(2003).

[10] Software Testing , Ron Patton, TechMedia.

[11] Software Testing Techniques, Boris Beizer, DreamTech Press
(2005).

